

Statement of Verification

BREG EN EPD No.: 000279 Issue 01

This is to verify that the

Environmental Product Declaration provided by:

Saudi Readymix Concrete Co Ltd

is in accordance with the requirements of:

EN 15804:2012+A1:2013

and

BRE Global Scheme Document SD207

This declaration is for:

C60 Readymix Concrete

Company Address

PO Box 31839 Al Khobar 31952 Saudi Arabia

Signed for BRE Global Ltd

Date of First Issue

Operator

16 December 2019

BRE/Global

16 December 2019

Date of this Issue

15 December 2022

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX.

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

Environmental Product Declaration

EPD Number: 000279

General Information

EPD Programme Operator	Applicable Product Category Rules						
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013						
Commissioner of LCA study	LCA consultant/Tool						
Saudi Readymix Concrete Co Ltd PO Box 31839 Al Khobar 31952 Saudi Arabia	BRE LINA v2.0						
Declared/Functional Unit	Applicability/Coverage						
1 m ³ of C60 Readymix Concrete	Manufacturer specific product.						
EPD Type	Background database						
Cradle to Gate with options	ecoinvent v3.2						
Demonstra	tion of Verification						
CEN standard EN 15	CEN standard EN 15804 serves as the core PCR ^a						
Independent verification of the declaration and data according to EN ISO 14025:2010							

Independent verification of the declaration and data according to EN ISO 14025:2010 ☐Internal ☐ External

(Where appropriate ^b)Third party verifier: Jane Anderson

a: Product category rules

b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A1:2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A1:2013 for further guidance

Information modules covered

			0			Use stage				End-of-life				Benefits and loads beyond		
	Produc	τ	Const	ruction	Rel	ated to	the bui	ilding fa	bric		ed to uilding		End-	or-lire		the system boundary
A 1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
$\overline{\mathbf{V}}$	$\overline{\mathbf{Q}}$	$\overline{\mathbf{Q}}$	$\overline{\mathbf{Q}}$	$\overline{\mathbf{Q}}$									$\overline{\checkmark}$		$\overline{\mathbf{Q}}$	

Note: Ticks indicate the Information Modules declared.

Manufacturing sites

33 production sites within the Kingdom of Saudi-Arabia.	
See additional information section for details.	

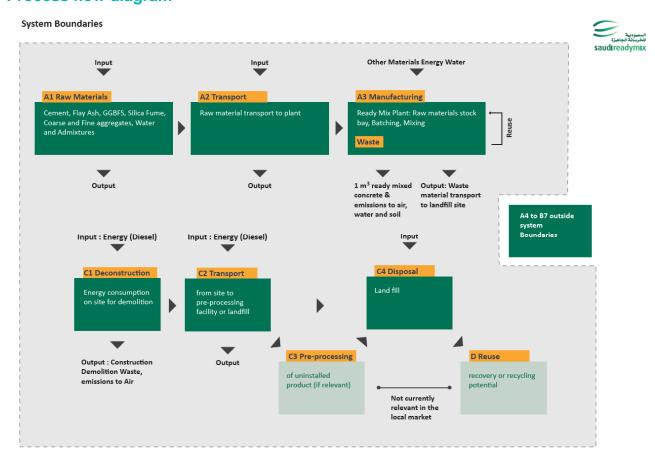
Construction Product

Product Description

Ready mixed concrete products are produced in different grades from C8 to C80 (Mpa). The lower class mixes (C8 to C25) are used for non-structural applications and higher grades (> C30) for structural applications as well as for special purposes.

Technical Information

Property	Value, Unit
Typical Density	2475 kg/m ³
Compressive Strength	60 MPa


Main Product Contents

Material/Chemical Input	Kg/m³
Course aggregate	1100
Sand	672
Water	154
Admixture	19
Cement	329
Micro silica	42
Ground granulated blast furnace slag	159
TOTAL	2475

Manufacturing Process

Saudi Readymix Concrete Co Ltd operates 33 factories, distributed throughout the Kingdom of Saudi Arabia covering all major inhabited areas in the eastern, central, western and southern regions. Based on national & international standards, the main component of concrete (cement, additives, chemical admixtures, water, coarse and fine aggregates) are mixed in a batching plant. Each factory has 2-3 batching plants.

Process flow diagram

Construction Installation

Readymix concrete is transported to site in a concrete truck mixer and poured on site. On site wastage of readymix concrete is assumed to be 5%.

End of Life

At end-of-life, 100% of readymix concrete is assumed to be sent to landfill. Transport to landfill is also included.

Life Cycle Assessment Calculation Rules

Declared unit description

1 cubic metre (m³) of C60 readymix concrete.

System boundary

This is a cradle to gate with options EPD covering modules A1 to A3, A4, A5, C2 and C4.

Data sources, quality and allocation

Data collected by Saudi Readymix for the production of C60 concrete at 33 concrete production sites for the calendar year of 2018 has been used for this EPD as a 'worst case scenario' to represent other products (C15, C20, C25, C30, C35, C40, C45 and C50. The rest of Saudi Readymix concrete production will demonstrate better values. The C60 product forms 1% of the total Saudi Readymix production. All products represented form 97% of total production. Figures for the input materials were calculated from the standard mix design based on the density of the C60 product multiplied by the total production of C60 over 33 production sites. Allocation of energy, water, emissions and waste has been done according to the provisions of the BRE PCR PN514 and EN 15804. Energy and water figures are calculated from invoices over the 33 sites.

Secondary data has been drawn from the BRE LINA database v2.0.61 and the background LCI datasets are based on ecoinvent v3.2 (2015). The dataset for type 1 Portland cement was used and Micro Silica (silicon dioxide) was represented by the silicone products dataset which is a polymer of silicon dioxide.

Cut-off criteria

All raw materials and energy input to the manufacturing process have been included. The inventory process in this LCA includes all data related to raw material, packaging material and consumable items, and the associated transport to the manufacturing site. Process energy and water use and direct production waste are included.

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters	Parameters describing environmental impacts										
			GWP	ODP	AP	EP	POCP	ADPE	ADPF		
			kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO ₂ equiv.	kg (PO₄)³- equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.		
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
Froduct stage	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
	Total (of product stage)	A1-3	6.58E+02	1.21E-04	2.16E+00	8.37E-01	3.18E-01	5.14E-03	6.77E+03		
Construction	Transport	A4	1.45E+01	2.67E-06	4.84E-02	1.28E-02	8.45E-03	3.81E-05	2.19E+02		
process stage	Construction	A5	3.78E+01	7.06E-06	1.43E-01	5.05E-02	2.19E-02	2.61E-04	4.20E+02		
	Deconstruction, demolition	C1	MND	MND	MND	MND	MND	MND	MND		
End of life	Transport	C2	4.51E+00	8.58E-07	1.55E-02	4.07E-03	3.20E-03	7.56E-06	7.03E+01		
End of file	Waste processing	СЗ	MND	MND	MND	MND	MND	MND	MND		
	Disposal	C4	1.28E+01	4.43E-06	9.90E-02	2.44E-02	1.71E-02	1.39E-05	3.73E+02		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND	MND	MND	MND		

GWP = Global Warming Potential; ODP = Ozone Depletion Potential; AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters describing resource use, primary energy										
			PERE	PERM	PERT	PENRE	PENRM	PENRT		
			MJ	MJ	MJ	MJ	MJ	MJ		
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG		
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG		
1 Toddet stage	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG		
	Total (of product stage)	A1-3	3.66E+02	8.16E-03	3.66E+02	7.07E+03	0.00E+00	7.07E+03		
Construction	Transport	A4	2.90E+00	1.08E-05	2.90E+00	2.17E+02	0.00E+00	2.17E+02		
process stage	Construction	A5	1.92E+01	4.10E-04	1.92E+01	4.34E+02	0.00E+00	4.34E+02		
	Deconstruction, demolition	C1	MND	MND	MND	MND	MND	MND		
End of life	Transport	C2	1.06E+00	2.65E-06	1.06E+00	6.99E+01	0.00E+00	6.99E+01		
End of file	Waste processing	C3	MND	MND	MND	MND	MND	MND		
	Disposal	C4	9.64E+00	1.46E-05	9.64E+00	3.70E+02	0.00E+00	3.70E+02		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND	MND	MND		

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water										
			SM	RSF	NRSF	FW				
			kg	MJ net calorific value	MJ net calorific value	m³				
	Raw material supply	A1	AGG	AGG	AGG	AGG				
Due do et ete es	Transport	A2	AGG	AGG	AGG	AGG				
Product stage	Manufacturing	А3	AGG	AGG	AGG	AGG				
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	9.43E+00				
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	4.74E-02				
process stage	Construction	A5	0.00E+00	0.00E+00	0.00E+00	5.04E-01				
	Deconstruction, demolition	C1	MND	MND	MND	MND				
E. J. CPG	Transport	C2	0.00E+00	0.00E+00	0.00E+00	1.63E-02				
End of life	Waste processing	С3	MND	MND	MND	MND				
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	4.26E-01				
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND				

SM = Use of secondary material; RSF = Use of renewable secondary fuels;

$$\label{eq:NRSF} \begin{split} &\text{NRSF} = \text{Use of non-renewable secondary fuels}; \\ &\text{FW} = \text{Net use of fresh water} \end{split}$$

			HWD	NHWD	RWD
			kg	kg	kg
	Raw material supply	A1	AGG	AGG	AGG
Product stage	Transport	A2	AGG	AGG	AGG
Froduct Stage	Manufacturing	А3	AGG	AGG	AGG
	Total (of product stage)	A1-3	6.73E+00	2.23E+02	2.66E-02
Construction	Transport	A4	9.17E-02	1.02E+01	1.51E-03
process stage	Construction	A5	3.80E-01	1.36E+02	1.90E-03
	Deconstructio n, demolition	C1	MND	MND	MND
End of life	Transport	C2	2.64E-02	6.00E+00	4.88E-04
LIIG OI IIIE	Waste processing	C3	MND	MND	MND
	Disposal	C4	1.34E-01	2.48E+03	2.52E-03
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

Other environmental information describing output flows – at end of life										
				MFR	MER	EE				
			kg	kg	kg	MJ per energy carrier				
	Raw material supply	A1	AGG	AGG	AGG	AGG				
Product stage	Transport	A2	AGG	AGG	AGG	AGG				
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG				
	Total (of product stage)	A1-3	0.00E+00	5.18E-04	0.00E+00	0.00E+00				
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
process stage	Construction	A5	0.00E+00	2.59E-05	0.00E+00	0.00E+00				
	Deconstruction, demolition	C1	MND	MND	MND	MND				
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
End of life	Waste processing	C3	MND	MND	MND	MND				
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND				

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenarios and additional technical information									
Scenario	Parameter	Units	Results						
	Transport to site distance assumed as 35km, diesel consum assumed as 0.35 l/km	ption of concrete m	ixer vehicle						
	Fuel type / Vehicle type	l/km	0.35						
A4 – Transport to the building site	Distance:	km	35						
	Capacity utilisation (incl. empty returns)	%	95						
	Bulk density of transported products	kg/m ³	2475						
A5 – Installation in the building	Energy use of concrete pump assumed to be 1 litre/m3 of diassumed at installation	esel. 5% wastage o	of product is						
	Energy use of concrete pump	I/m3	1.0						
	Wastage at installation	%	5						
C2 and C4 End of life,	100% of waste from deconstruction goes to landfill. Maximu Fuel consumption of lorry 0.5 litres/km.	m distance to dispo	sal site 20km.						
	End of life disposal of 1 m3 of concrete to landfill	kg	2475						
	Fuel type / Vehicle type	l/km	0.5						
	Distance:	km	20						

Summary, comments and additional information

Comparison of C60 Results to Production-Weighted Average

Table 1 shows a comparison of C60 LCA results for selected indicators to the results for a production-weighted average of 97% of Saudi Readymix total production. The C60 product was chosen to represent the other products as a 'worst-case scenario'.

Indicator	Unit	C60 product	Production weighted average
		A1-A3	A1-A3
GWP	kg CO2 eq.	6.58E+02	4.88E+02
ODP	kg CFC 11 eq.	1.21E-04	4.24E-05
AP	kg SO2 eq.	2.16E+00	1.31E+00
EP	kg (PO4)3- eq.	8.37E-01	5.86E-01
POCP	kg C2H4 eq.	3.18E-01	1.90E-01
ADPE	kg Sb eq.	5.14E-03	4.37E-04
ADPF	MJ eq.	6.77E+03	3.70E+03

List of Saudi Readymix Production Sites

This list of production sites is current at the compilation of the EPD:

RM01 Jubail

RM03 Khafji

RM05 Saihat

RM29 Aziziyah

RM44 2nd Industrial DAMMAM

RM39 Ras Al Khair

RM86 Ras AlKhair Maritime Project

RM53 Hofuf 2nd Location

RM80 Al Fadhili Gas Project

RM87 Harad Project

RM89 Marjan Gas Project

RM08 Riyadh New Sulay

RM54 Riyadh North Second Location

RM58 New Al Imam Univ. Project (On-Site)

RM59 CAP2 Project : El Seif

RM64 ABV MOI - (Ministry of Interior Medical City)

RM74 GAC-AL FOUZAN

RM35 Al-Khari New Location

RM46 AL Qaseem Factory

RM85 - SHARMA

RM22 Jeddah South

RM61 New Jeddah North-Binladin HAMDANIAH

RM67 New Makkah Factory

RM81 KAAR (King Abdul Aziz Road) Project

RM16 Madina

RM12 Rabigh

RM60 New On-site (Thowal)

Continued...

RM76 New KAP-(King Abdullah Port) RM32 Yanbu RM84 Al Taief – Project Wade Al Marj RM88 KFNB RM90 Red Sea Project RM57 Jizan Refinery Project -SPR

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

ASTM C94/C94M Standard Specification for Ready-Mixed Concrete, Revision 19A, August 15, 2019, USA